A short note on strongly flat covers of acts over monoids
نویسندگان
چکیده
Recently two different concepts of covers of acts over monoids have been studied by a number of authors and many interesting results discovered. One of these concepts is based on coessential epimorphisms and the other is based on Enochs’ definition of a flat cover of a module over a ring. Two recent papers have suggested that in the former case, strongly flat covers are not unique. We show that these examples are in fact false and so the question of uniqueness appears to still remain open. In the latter case, we re-present an example due to Kruml that demonstrates that, unlike the case for flat covers of modules, strongly flat covers of S−acts do not always exist.
منابع مشابه
On Regularity of Acts
In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...
متن کاملOn the U-WPF Acts over Monoids
Valdis Laan in [5] introduced an extension of strong flatness which is called weak pullback flatness. In this paper we introduce a new property of acts over monoids, called U-WPF which is an extension of weak pullback flatness and give a classification of monoids by this property of their acts and also a classification of monoids when this property of acts implies others. We also show that regu...
متن کاملOn $GPW$-Flat Acts
In this article, we present $GPW$-flatness property of acts over monoids, which is a generalization of principal weak flatness. We say that a right $S$-act $A_{S}$ is $GPW$-flat if for every $s in S$, there exists a natural number $n = n_ {(s, A_{S})} in mathbb{N}$ such that the functor $A_{S} otimes {}_{S}- $ preserves the embedding of the principal left ideal ${}_{S}(Ss^n)$ into ${}_{S}S$. We...
متن کاملOn Some Open Problems of Mahmoudi and Renshaw
This paper continues the investigation of covers of cyclic acts over monoids. Special attention is paid to (P)-covers and strongly flat covers of cyclic acts. In 2008 Mahmoudi and Renshaw posed some open problems and we gave some examples on them in 2012. In this paper, we obtained some further results on these problems and hence gave some deeper answers to them.
متن کاملClassification of monoids by Condition $(PWP_{ssc})$
Condition $(PWP)$ which was introduced in (Laan, V., {it Pullbacks and flatness properties of acts I}, Commun. Algebra, 29(2) (2001), 829-850), is related to flatness concept of acts over monoids. Golchin and Mohammadzadeh in ({it On Condition $(PWP_E)$}, Southeast Asian Bull. Math., 33 (2009), 245-256) introduced Condition $(PWP_E)$, such that Condition $(PWP)$ implies it, that is, Condition $...
متن کامل